Friday, 17 January 2014

Liang-Barsky Line Clipping Algorithm with C/C++

Theory
In Liang-Barsky algorithm, we first write the point-clipping conditions in parametric form as 
Parametric Form
Each of these for inequalities can be expressed as inequalities , k = 1, 2, 3, …..
where parameter p and q are defined as
Boundaryparameter
Any line that is parallel to one of the clipping boundaries has pk = 0 for the value of k corresponding to that boundary. If, for that value of k, we also find qk < 0, then the line is completely outside the boundary and can be eliminated from further consideration. If qk >=0, the line is inside the parallel clipping boundary.
When pk <0, the infinite extension of the line proceeds from the outside to the inside of the inside of the infinite extension of this particular boundary. If pk > 0, the line proceeds from the insides to the outside. For a nonzero value of pk, we can calculate the value of u that corresponds to the point where the infinitely extended line intersects the extension of boundary k as u = qk / pk.

For each line, we calculate values of parameters u1 and u2 that define that part of the line that lies within the clip rectangle. The value of u1 is determined by looking at the rectangle edges for which the line proceeds from the outside to inside (p < 0). For these edges, we calculate rk = qk / pk. The value of u1 is taken as the largest of the set consisting of 0 and the various values of r. Conversely, the value of u2 is determined by examining the boundaries for which the line proceeds from inside to outside (p > 0). A value of rk is calculated for each of these boundaries, and the value of u2 is minimum of the set consisting of 1 and the calculated r values. If u1 > u2, the line is completely outside the clip window and it can be rejected. Otherwise, the endpoints of the clipped line are calculated from the two values of parameter u.
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
<div align="justify">
<b>Source Code</b></div>
#include <windows.h>
#include <cmath>
#define ROUND(a) ((int) (a + 0.5))
 
static HWND sHwnd;
static COLORREF redColor=RGB(255,0,0);
static COLORREF blueColor=RGB(0,0,255);
static COLORREF greenColor=RGB(0,255,0);
 
typedef struct Point
{
    int x;
    int y;
}pt;
 
pt winMin = {100, 100};
pt winMax = {800, 400};
pt p1 = {50, 200};
pt p2 = {900, 300};
 
void SetWindowHandle(HWND hwnd){
    sHwnd=hwnd;
}
 
/* SetPixel */
void setPixel(int x,int y,COLORREF& color=redColor){
    if(sHwnd==NULL){
        MessageBox(NULL,"sHwnd was not initialized !","Error",MB_OK|MB_ICONERROR);
        exit(0);
    }
    HDC hdc=GetDC(sHwnd);
    SetPixel(hdc,x,y,color);
    ReleaseDC(sHwnd,hdc);
    return;
 
}
 
void LineBresenham (int xa, int ya, int xb, int yb){
    int dx = (xb - xa), dy = (yb - ya);
    int x, y, xEnd, yEnd;
    int p = 2 * abs(dy) - abs(dx);
    int twoDy = 2 * abs(dy), twoDyDx = 2 * (abs(dy) - abs(dx));
    int tFactor = dx*dy;
    if(xa > xb){
        x = xb;
        y = yb;
        xEnd = xa;
    }else{
        x = xa;
        y = ya;
        xEnd = xb;
    }
    setPixel(x, y);
    while(x < xEnd){
        x++;
        if(p < 0)
            p += twoDy;
        else{
            if(tFactor > 0) //for positive slope
                y++;
            else //for negative slope
                y--;
            p += twoDyDx;
        }
        setPixel(x, y);
    }
}
 
void drawBoundary(pt winMin, pt winMax){
    int x, y;
    x = winMin.x;
    for(y = winMin.y; y < winMax.y; y++){
        setPixel(x,y, blueColor);
    }
    y = winMin.y;
    for(x = winMin.x; x < winMax.x; x++){
        setPixel(x,y, blueColor);
    }
    x = winMax.x;
    for(y = winMin.y; y < winMax.y; y++){
        setPixel(x,y, blueColor);
    }
    y = winMax.y;
    for(x = winMin.x; x < winMax.x; x++){
        setPixel(x,y, blueColor);
    }
 
}
 
int clipTest(float p, float q, float *u1, float *u2){
    float r;
    int retVal = TRUE;
 
    if(p < 0.0){
        r = q / p;
        if(r > *u2)
            retVal = FALSE;
        else
            if (r > *u1)
                *u1 = r;
    }
    else
        if (p > 0.0){
            r = q / p;
            if (r < *u1)
                retVal = FALSE;
            else if (r < *u2)
                *u2 = r;
        }
        else
            if(q < 0.0)
                retVal = FALSE;
 
        return (retVal);
}
 
void clipLine(pt winMin, pt winMax, pt p1, pt p2){
    float u1 = 0.0, u2 = 1.0, dx = p2.x - p1.x, dy;
    if(clipTest(-dx, p1.x - winMin.x, &u1, &u2))
        if(clipTest(dx, winMax.x - p1.x, &u1, &u2)){
            dy = p2.y - p1.y;
            if(clipTest(-dy, p1.y - winMin.y, &u1, &u2))
                if(clipTest(dy, winMax.y - p1.y, &u1, &u2)){
                    if(u2 < 1.0){
                        p2.x = p1.x + u2 * dx;
                        p2.y = p1.y + u2 * dy;
                    }
                    if(u1 > 0.0){
                        p1.x += u1 * dx;
                        p1.y += u1 * dy;
                    }
                    LineBresenham(ROUND(p1.x), ROUND(p1.y), ROUND(p2.x), ROUND(p2.y));
                }
        }
}
/* Window Procedure WndProc */
LRESULT CALLBACK WndProc(HWND hwnd,UINT message,WPARAM wParam,LPARAM lParam){
 
    switch(message){
        case WM_PAINT:
            SetWindowHandle(hwnd);
            drawBoundary(winMin, winMax);
            clipLine(winMin, winMax, p1, p2 );
            break;
        case WM_CLOSE: // FAIL THROUGH to call DefWindowProc
            break;
        case WM_DESTROY:
            PostQuitMessage(0);
            return 0;
        default:
        break; // FAIL to call DefWindowProc //
    }
    return DefWindowProc(hwnd,message,wParam,lParam);
}
 
int WINAPI WinMain(HINSTANCE hInstance,HINSTANCE hPrevInstance,LPSTR lpCmdLine,int iCmdShow){
    static TCHAR szAppName[] = TEXT("Line Clipping");
    WNDCLASS wndclass;
    wndclass.style         = CS_HREDRAW|CS_VREDRAW ;
    wndclass.lpfnWndProc   = WndProc ;
    wndclass.cbClsExtra    = 0 ;
    wndclass.cbWndExtra    = 0 ;
    wndclass.hInstance     = hInstance ;
    wndclass.hIcon         = LoadIcon (NULL, IDI_APPLICATION) ;
    wndclass.hCursor       = LoadCursor (NULL, IDC_ARROW) ;
    wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
    wndclass.lpszMenuName  = NULL ;
    wndclass.lpszClassName = szAppName ;
 
    // Register the window //
    if(!RegisterClass(&wndclass)){
        MessageBox(NULL,"Registering the class failled","Error",MB_OK|MB_ICONERROR);
        exit(0);
    }
 
    // CreateWindow //
    HWND hwnd=CreateWindow(szAppName,"Liang-Barsky Algorithm - Programming Techniques",
                WS_OVERLAPPEDWINDOW,
                 CW_USEDEFAULT,
                 CW_USEDEFAULT,
                 CW_USEDEFAULT,
                 CW_USEDEFAULT,
                 NULL,
                 NULL,
                 hInstance,
                 NULL);
    if(!hwnd){
        MessageBox(NULL,"Window Creation Failed!","Error",MB_OK);
        exit(0);
    }
    // ShowWindow and UpdateWindow //
    ShowWindow(hwnd,iCmdShow);
    UpdateWindow(hwnd);
 
    // Message Loop //
    MSG msg;
    while(GetMessage(&msg,NULL,0,0)){
        TranslateMessage(&msg);
        DispatchMessage(&msg);
    }
    /* return no error to the operating system */
    return 0;
}

Output

Liang-Barksy

0 comments:

Post a Comment

Twitter Delicious Facebook Digg Stumbleupon Favorites More

 
Design by Free WordPress Themes | Bloggerized by Lasantha - Premium Blogger Themes | Affiliate Network Reviews