Sunday, 19 January 2014

Data Structure: How to implement Merge Sort in C++?

Merging is the process of combining two or more sorted files into a third sorted file. Merge sort is based on the divide and conquer paradigm. It can be explained as …. Let A[p…..r] is given array with indices p = 1 to r = n. Then steps can be

          Image Source: http://en.wikipedia.org/wiki/Merge_sort 
  1. Divide Step: If a given array A has zero or one element, then simply return; it is already sorted. Otherwise split A[p…..r] into two subarrays as A[p….q] and A[q+1…..r] each containing about the half of the elements.
  2. Conquer Step: Conquer by recursively sorted the two sub-arrays A[p….q] and A[q+1….r]
  3. Combine Step: Combine the elements back in A[p…..r] by merging the two sorted sub-arrays into the sorted sequence. Note that: the recursion bottoms out when the sub-array has just one element. So that it is trivially sorted.
Source Code:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#include<iostream>
using namespace std;
 
//create a class MergeSort
class MergeSort{
    public:
        int no_of_elements;
        int elements[10];
    public:
        void getarray();
        void partition(int [] ,int ,int);
        void sortit(int [], int , int, int);
        void display();
};
 
// get the array to be sorted from the user
void MergeSort::getarray(){
    cout<<"How many elements?: ";
    cin>>no_of_elements;
    cout<<"Insert elements to sort: ";
    for(int i=0;i<no_of_elements;i++){
        cin>>elements[i];
    }
}
 
// recursively divide the array into sub arrays until all sub
// arrays contain only one element
void MergeSort::partition(int elements[], int low, int high){
    int mid;
    if(low<high){
        mid=(low+high)/2;
        // sort the left sub array
        partition(elements,low,mid);
 
        // sort the right sub array
        partition(elements,mid+1,high);
 
 
        sortit(elements,low,mid,high);
 
    }
}
void MergeSort::sortit(int elements[], int low, int mid, int high){
    int i,j,k,l,b[20];
    l=low;
    i=low;
    j=mid+1;
    while((l<=mid)&&(j<=high)){
        if(elements[l]<=elements[j]){
            b[i]=elements[l];
            l++;
        }else{
            b[i]=elements[j];
            j++;
        }
        i++;
    }
    if(l>mid){
        for(k=j;k<=high;k++){
            b[i]=elements[k];
            i++;
        }
    }else{
        for(k=l;k<=mid;k++){
            b[i]=elements[k];
            i++;
        }
    }
    for(k=low;k<=high;k++){
        elements[k]=b[k];
    }
}
void MergeSort::display(){
    cout<<"The sorted element is\n";
    for(int i = 0 ; i < no_of_elements; i++){
        cout<<elements[i]<<" ";
    }
}
int main(){
    MergeSort MS;
    MS.getarray();
    MS.partition(MS.elements,0,MS.no_of_elements);
    MS.display();
    return 0;
}
Output:
How many elements? 7
Insert element to sort: 63 78 52 12 99 32 13
The sorted element is
12 13 32 52 63 78 99

0 comments:

Post a Comment

Twitter Delicious Facebook Digg Stumbleupon Favorites More

 
Design by Free WordPress Themes | Bloggerized by Lasantha - Premium Blogger Themes | Affiliate Network Reviews