In selection sort,
- In each pass smallest/largest element is selected and placed in a sorted list.
- Th entire array is divided into two parts: sorted and unsorted
- In each pass, in the unsorted subarray, the smallest element is selected and exchanged with the first element.
1. Declare and initialize necessary variables such as array[], i, j, large, n etc. 2. for ( i = n - 1; i > 0; i--), repeat following steps large = x[0]; index = 0; 2.1 for(j = i ; j <= i; j++) if x[j] > large large = x[i] index = j 2.2 x[index] =x[i] x[i] = large 3. Display the sorted array
Source Code:
#include<iostream>using namespace std;class SelectionSort{
public:
int no_of_elements;
int elements[10];
public:
void getarray();
void sortit(int [], int);void display();
};void SelectionSort::getarray(){
cout<<"How many elements? ";
cin>>no_of_elements;cout<<"Insert array of element to sort: ";
for(int i=0;i<no_of_elements;i++){cin>>elements[i];}}void SelectionSort::sortit(int x[], int n){int i, indx, j, large;
for(i = n - 1; i > 0; i--){
large = x[0];indx = 0;for(j = 1; j <= i; j++){
if(x[j] > large){
large = x[j];indx = j;}}x[indx] = x[i];x[i] = large;}}void SelectionSort::display(){
cout<<"The sorted array is :\n";
for(int i = 0 ; i < no_of_elements; i++){cout<<elements[i]<<" ";
}cout<<endl;}int main(){
SelectionSort SS;SS.getarray();SS.sortit(SS.elements,SS.no_of_elements);SS.display();return 0;
}
Output:
How many elements? 6
Insert array of element to sort: 78 56 110 12 56 26
The sorted list is 12 26 56 56 78 110
Efficiency of Straight selection sort
In this first pass, it makes (n – 1) comparisons, in second pass it makes (n – 2) comparisons and so on, So total number of comparisons is n(n-1)/2 which is O(n^2)
0 comments:
Post a Comment