Sunday, 26 January 2014

Data Structure: Implementing Quick Sort using C/C++

Algorithm

1. Declare and initialize necessary variables
2. Pick a pivot element.
3. FInd the proper position of the pivot element
4. Divide the total array into two sub arrays so that all elements
 of the left sub array are less than pivot and that of right are greater than pivot.
5. Do the quick sort on the each subarrays



Source Code:
#include<iostream>
using namespace std;
class QuickSort{
    public:
        int no_of_elements;
        int elements[10];
    public:
        void getarray();
        void sortit(int [], int, int);
        void partition(int [],int ,int,int&);
        void display();
};
void QuickSort::getarray(){
    cout<<"How many elements?: ";
    cin>>no_of_elements;
    cout<<"Insert array of element to sort: ";
    for(int i=0;i<no_of_elements;i++){
        cin>>elements[i];
    }
}
void QuickSort::sortit(int x[], int lb, int ub){
    int j;
    if(lb >= ub)
    return;
    display();
    partition(x,lb,ub,j);
    sortit(x,lb,j-1);
    sortit(x,j+1,ub);
}
void QuickSort::partition(int x[],int lb,int ub,int &pj){
    int a, down, temp, up;
    a = x[lb];
    up = ub;
    down = lb;
    while(down < up){
        while(x[down] <= a)
            down++;
        while(x[up]  > a)
            up--;
        if(down < up){
            temp = x[down];
            x[down] = x[up];
            x[up] = temp;
        }
    }
    x[lb] = x[up];
    x[up] = a;
    pj = up;
}
void QuickSort::display(){
    for(int i = 0 ; i < no_of_elements; i++){
        cout<<elements[i]<<" ";
    }
    cout<<endl;
}
int main(){
    QuickSort QS;
    QS.getarray();
    cout<<"Sorting is given in step by step showing each iteration"<<endl;
    QS.sortit(QS.elements,0,QS.no_of_elements-1);
    QS.display();
    return 0;
}

Output:

QuickSort

Efficiency of Quick Sort

Assume that file size n is a power of 2 i.e. n = 2^m or m = logn. Also assume proper position of pivot is always at middle. In first pass, there are n comparisons and file splits into subfiles of size n/2 and so on . So total number of comparisons is O(n*m) or O(nlogn).

0 comments:

Post a Comment

Twitter Delicious Facebook Digg Stumbleupon Favorites More

 
Design by Free WordPress Themes | Bloggerized by Lasantha - Premium Blogger Themes | Affiliate Network Reviews